
Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

Programming Guide for CNC Control
Cards

All rights reserved.

Any dispute about the use of this software and/or hardware or of these terms and conditions shall be resolved or
arbitrated under English Law.

Manuals and accompanying documentation may not be copied or printed for the purposes of training, advertising,
promotion or any other use without the permission of Conqueror Design and Engineering Limited.

Permission to copy and print manuals and documentation for personal use is granted to the owner/user of the
software supplied.

All trademarks are acknowledged to be the property of their respective owners.

This manual produced on 24/04/2014.

Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

Warranty

This software and/or hardware and accompanying documentation are provided 'as-is' and are not warranted to be fit
for any specific purpose or usage.

The use of this software and/or hardware is undertaken at your own risk and Conqueror Design and Engineering
Limited will not be responsible for any loss of data, time or income resulting from the use of this software and/or
hardware.

Warranty

Updates are available from the website.
We recommend getting the latest manual updates when working with the product.

IContents

I

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

Table of Contents

Part 1 Direct control via the RS232 1

Part 2 Communication 3

... 41 Sample Communication Loop

Part 3 Flags and values returned by the control 5

Part 4 Useful Tips 7

Part 5 Commands interpreted by the control 8

... 91 <CTRL+B> - 34 Char Hex Query

... 102 <CTRL+C> - Flags and Buffer Count

... 113 <CTRL+D> - 19-Byte Binary Query

... 124 <CTRL+E> - Echo

... 135 <CTRL+N> - Echo Off

... 146 <CTRL+P> - 26-Byte or 59-Byte Binary Query

... 167 <Esc> - Escape Command

... 178 @ - 30 Char Hex Query

... 189 D - Display Command

... 1910 EC - Error Clear

... 2011 ES - Error Status

... 2112 F - Feed Command

... 2213 FF - Fast Feed

... 2314 G0 - Rapid Move

... 2415 G1 - Feed Move

... 2516 G5 - Queued Mode

... 2617 G29 - Home Axes

... 2718 G33 - Sychronised Move

... 2819 G54 - Set Home Position

... 2920 G92 - Set Datum

... 3021 I - Information Command

... 3122 M3 - Spindle On CW

Programming Guide for CNC Control CardsII

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

... 3223 M4 - Spindle On CCW

... 3324 M5 - Spindle Off

... 3425 M6 - Change Tool

... 3526 M8 - Coolant On

... 3627 M9 - Coolant Off

... 3728 M2/M30 - Programme End

... 3829 M90 - Relay On

... 3930 M91 - Relay Off

... 4031 M98 - Motors On

... 4132 M99 - Motors Off

... 4233 MA - Manual Mode

... 4334 P - Parameter Command

... 4435 ST - Status Command

... 4536 SU - Set U

... 4637 SV - Set V

... 4738 SW - Set W

... 4839 SX - Set X

... 4940 SY - Set Y

... 5041 SZ - Set Z

... 5142 T - Tool Offset

Part 6 DLL programming 52

... 541 EZVersion

... 552 EZInit

... 563 EZStart

... 574 EZStop

... 585 EZStatus

... 596 EZStatusEx

... 607 EZGetVal

... 618 EZGetParam

... 629 EZSetParam

... 6310 EZGetReply

... 6411 EZGetMachineValue

IIIContents

III

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

... 6512 EZBusy

... 6613 EZQueued

... 6714 EZError

... 6815 EZLastError

... 6916 EZLastErrorMessage

... 7017 EZClearError

... 7118 EZSendCommand

... 7219 EZWaitCommand

... 7320 EZGetMacID

... 7421 EZInterpret

... 7522 EZWaitForMachine

Part 7 Version History 76

Index 77

1 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

1 Direct control via the RS232

It is possible to control the Conqueror Design and Engineering CNC control cards directly from
the serial port without using the EaziCNC or EaziCNCLite programmes.

The CNC cards accept a subset of the full set of G & M codes (for instance in most cases no
circular interpolation, no splines and no canned cycles) that EaziCNC supports, coordinates
need to be in millimetres or steps (depending on the card) and only absolute positioning is
supported. Also you need to deal with the handshaking from the machine to make sure that
commands do not get overwritten before they can be executed.

To test this from, for instance, HyperTerminal...
1. Open a connection to the card. For an MPC4, MPC5, M101 or M641 card the

parameters will be 115200 baud, 8 data bits, no parity and 1 stop bit with Xon/Xoff
handshaking. For an M100 card the parameters will be 38400 baud, 8 data bits, no
parity and 1 stop bit with Xon/Xoff handshaking.

2. Type <CTRL+E>... this will turn on the echo so that you can see the keys typed and
the responses from the card. You should also turn on the option to add line-feeds to
carriage returns (N.B. <CTRL+N> turns the echo off... the controller will not
send anything back via the RS232 that is not requested... this keeps the
interface 'clean' for very rapid communication from a programme like
EaziCNC).

3. If you hit <Enter> you should see the '>' prompt.
4. You can now enter commands such as 'ST' to show the status, 'M3' to turn on the

spindle and 'G0 X10' to move (before you do any moves you may need to send an
'EC' to clear the error-state... by default the controller will power-up with error #3 -
power-on).

5. If you want to see a rolling display of the coordinate changes as a movement
command is executed then enter 'D1' (and 'D0' to turn the feature off).

6. The controller will send status information back to a control programme if certain
characters are sent... for instance sending a '@' will return X, Y, Z and E positions,
the key panel code and a status byte as a packed hexadecimal string. There are other
codes which will return information from the box either as text, packed hexadecimal
or binary-blobs.

In the raw 'terminal' mode any axis commands (such as 'X10' or 'Y1.26') will be interpreted as
millimetres on an MPC4, MPC5, M101 or M641 card using the parameters to convert them
into an accurate number of steps... the coordinates shown by the status commands are also
shown in millimetres with 2 decimal places (0.01) but no decimal points are shown. On an M100
card the coordinates are interpreted and shown as numbers of steps. On all cards any of the
commands that return data in a packed format return the raw step values.

There are a couple of ways to proceed depending on how sophisticated your control of the
machine needs to be... you can either write your own interface to the controller which sends
commands out of the serial port direct *or* there is a DLL available which contains a 'virtual'-
machine that supports all of the commands that EaziCNC does and that can be easily integrated
into any programme. The DLL takes care of all the serial communication to the machine and
exposes a command function and a query function to the calling programme. The DLL is an

2Direct control via the RS232

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

extra cost option.

3 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

2 Communication

The CNC control cards are passive. With the exception of a prompt character '>' sent when
they are powered on they will not initiate any communication with the controlling computer.

There are two types of communication with the control card... sending commands and sending
queries.

Sending commands...
To send a command a text string is simply sent to the serial port. The string consists of text
tokens each of which is one or two letters which may or may not be followed by a number. Each
text token must be separated from the next by a <Space> (ASCII 32) character and the whole
command is completed with a carriage-return <CR> (ASCII 13). There is no limit to the length
of a text line sent but any repeated tokens will simply overwrite the previous values and each
token can be no more than 16 characters long.

Example commands...
G0<SPACE>X10<CR>
G1<SPACE>Y10.1<CR>
G1<SPACE>Z4<CR>
X0<CR>

When a command has been sent to the controller then the controller may be busy for some time
processing the command. During this time another command can be sent to the controller and
will be stored in the internal buffer. The controller can be repeatedly queried to check when it is
again free or more commands can be sent and the handshaking can be used to control the flow
of commands. If you are using the buffer then it is *extremely* important to respect the Xon/
Xoff handshaking or you will overwrite commands in the buffer before they can be processed.

A number of commands will cause the control to return a text value (such as 'ES' which will
return the error code status)... this is not the same as a query command. One of the main
differences is that such commands are queued so they will not return any value until the previous
commands have been executed.

Warning If a command sent to the control causes an error... such as hitting a limit
switch... or an error condition occurs for some other reason then commands will be
ignored until the error condition is cleared.

Sending queries...
Queries are sent using a number of trigger characters (such as '@'). Queries can be sent at any
time... even when commands are queued in the buffer... and the response will be immediate.

For instance if the '@' character is sent to the control then it will respond with...
#000000000000000000000000FF03<CR>

4Communication

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

2.1 Sample Communication Loop

Start

Send Query
Command

Response
Received?

YES

NO

Update coords
and status

for user

Error
condition?

YES

NO

Is it error 3?
YES

NO

Is it error 1?
YES

NO

Send ASCII 14
to disable echo

Send 'EC'
to clear error

Sending a
command?

YES

NO

Is Busy
flag set?

YES

NO

Is CIB
flag set?

YES

NO

Send and
clear command

End

In EaziCNC, EaziCNCLite and the
DLL this loop is called repeatedly by
a background thread. If a command
has been put in the thread buffer then
it is sent to the controller if possible
otherwise only the status and coordinates
are updated.
The main programme cannot send
another command until the previous one
is sent/cleared.

5 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

3 Flags and values returned by the control

Status Byte

The status byte returned by many of the query commands consists of...

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

CIB MAN CQB BUSY STOP EB3 EB2 EB1

The CIB - Command In Buffer flag indicates that there is a command in the internal buffer. If
the 'BUSY' flag is not set then the command has not been completed with a carriage return,
<CR> ASCII 13, yet. If the 'BUSY' flag is set then the controller is probably waiting for the
previous operation to complete before accepting the command from the buffer.

The MAN - Manual Mode flag indicates that the controller is in manual mode and the axes are
being controlled using the jog-buttons or electronic hand-wheel (if supported)... it is not possible
to send movement commands to the controller while it is in manual mode. Manual mode can be
exited either using the buttons or by sending an <Esc> - Escape command.

The CQB - Command Queued flag indicates that a vector queued command is waiting to be
executed after the current command completes. The flag indicates that at least one queued
command is waiting... there may be more than one depending on the controller model.

The BUSY flag indicates that the control is busy executing a command. If the CIB - Command
in Buffer flag is not set too then the next command can be queued for execution when the
current command completes. Depending on the controller it may be possible to queue several
commands.

The STOP - Stop Activated flag indicates that the emergency stop circuit on the card is
activated... many of the commands will not operate if the emergency stop circuit is activated.

The low 3 bits, EB3, EB2 and EB1 are the current error code. The error codes are...
0 No error
1 Stopped
2 Limit Error
3 Power On
4 Command Error
5 Feedback Error

6Flags and values returned by the control

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

Key-code Byte

The key-code byte returned by the query commands consists of...

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

FB2 FB1 BN2 BN1 KC4 KC3 KC2 KC1

FB2 and FB1 are the optical encoders used for thread synchronisation (if fitted).

BN1 and BN2 (if fitted) are two front panel push-buttons.

The lower 4-bits, KC4, KC3, KC2 and KC1 are the key-code of the axis jog-button pressed.

The buttons are active low so if nothing is pressed the value will be 0xFF.

Limit Switch Status

The limit switch status byte returned by the query commands consists of...

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 1 Z- Limit Z+ Limit Y- Limit Y+ Limit X- Limit Z+ Limit

Other limit switches are returned as key-codes in the key-code byte.

Relay Status

The relay status byte returned by the query commands consists of...

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Coolant
On

Relay 3
On

Relay 2
On

Relay 1
On

Spindle
On

Relay 4
On

Motors
On

Direction

7 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

4 Useful Tips

If you are writing a programme to communicate with the control directly then here are a number
of tips...

1. It is probably advisable to turn off the echoing of commands and characters from the control.
Do this by sending a <CTRL+N> character (ASCII 14) to the control. If you do not do this
then you might find spurious characters in the middle of any response packet when you query
the control.

2. Do not query the control too frequently... you must let a suitable amount of time elapse
between queries even if you think the query was lost. If you do not then you run the risk of
stalling the control while multiple queries are answered. Typically you should query an MPC4,
MPC5, M101 or M641 no more than 300 times a second and an M100 control no more
than 100 times a second.

3. If you want to display coordinates on the screen or monitor the status of the controller then it
is not advisable to use the Xon/Xoff handshaking to control the flow of commands. Instead
poll the control using the query commands to find out when the next command can be sent.

4. EaziCNC and EaziCNCLite provide a continuous display of the CNC card state on the
controlling computer and depending on the application you are using the control card for you
will probably need to implement some form of coordinate display in your control programme.

5. EaziCNC and EaziCNCLite monitor the card continuously and deal with simple error codes
(like power on) automatically. They also display other errors so that the user can deal with
them and knows what state the machine is in.

6. If using the query commands it is best to disable the Xon/Xoff handshaking in the control
computer otherwise it is possible that the flow control may stop the answer to a query
command being received.

7. Be careful not to send stray coordinate commands (X, Y, Z, U, V and W tokens)... the G-
code movement commands are modal and a change in coordinates is interpreted as a new
movement command.

8. With the M100 controller use the G1 command for all positioning and specify a high feed-rate
for rapid moves.

9. Do not send undefined tokens to the control... just because they are not listed here does not
mean that they do not have a function on the control card.

10.If you need to use tool offsets then you should keep track of them within your programme
and add or subtract the relevant values from the coordinates you send to the control card.
Most of the control cards have support for tool offsets but explaining how to use them is
beyond the scope of this document. If you can't work how to do it for yourself then use the
DLL!

11.When the control is powered on it is in an error state (error code #3)... you will need to clear
the error code (using EC - Error Clear) before you can execute any movement commands on
the controller. If you are turning off the echoing of characters then you need to reset this after
a power-on.

12. EaziCNC, EaziCNCLite and the DLL use a separate processor thread for the
communication loop to the control card and the status display functions so that they can still
operate when the main programme loop is blocked waiting to transfer commands to the
controller.

8Commands interpreted by the control

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5 Commands interpreted by the control

The following is a list of the commands supported by the control cards... do not confuse this with
a list of the commands supported by EaziCNC/EaziCNCLite or the DLL... this is a list of JUST
the commands that are supported directly by the control cards.

The valid text tokens in a command are...

A X spline point 1
B Y spline point 1
C Z spline point 1
D Display command or U spline point 1
EC Error Clear
ES Error Status
F Feed Command
G G-commands G0, G1, G5, etc.
I Information Command or X centre of circle
J Y centre of circle or Y spline point 2
K Z centre of circle or Z spline point 2
L U spline point 2
M M-commands M3, M4, M5, etc.
MA Manual Mode
P Parameter Command
R parameter value
ST Status Command
SU Set U
SV Set V
SW Set W
SX Set X
SY Set Y
SZ Set Z
T Tool Offset
U coordinate (4th Axis)
V coordinate (5th Axis)
W coordinate (6th Axis)
X coordinate (1st Axis)
Y coordinate (2nd Axis)
Z coordinate (3rd Axis)

....many tokens are only used if they given in a command that requires them. Any extra tokens
included with a command that does not require them are simply ignored.

9 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.1 <CTRL+B> - 34 Char Hex Query

Sending a <CTRL+B> (ASCII 2) character to the control card will return a 34 character
response string...

#0000000000000000000000000000FF00<CR>

The format of the response string is...
#XXXXXXYYYYYYZZZZZZUUUUUUSSRRKKFF<CR>

....where
XXXXXX Is 6 hex digits representing a 24-bit number which is the X position in

steps
YYYYYY Is 6 hex digits representing a 24-bit number which is the Y position in

steps
ZZZZZZ Is 6 hex digits representing a 24-bit number which is the Z position in

steps
UUUUUU Is 6 hex digits representing a 24-bit number which is the U position in

steps
SS Is 2 hex digits representing an 8-bit number which is the spindle speed

programmed (as a value from 0 to 255)
RR is 2 hex digits giving the relay status
KK Is 2 hex digits giving the current key code
FF Is 2 hex digits giving the current flags
<CR> Is a carriage return (ASCII 13)

Supported by all control cards.

10Commands interpreted by the control

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.2 <CTRL+C> - Flags and Buffer Count

Sending a <CTRL+C> (ASCII 3) character to the control card will return a 6 character
response string...

&0000<CR>

The format of the response string is...
#FFBB<CR>

....where
FF Is 2 hex digits giving the current flags
BB Is 2 hex digits giving the number of commands queued in the command

buffer
<CR> Is a carriage return (ASCII 13)

Supported by all control cards..

11 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.3 <CTRL+D> - 19-Byte Binary Query

Sending a <CTRL+D> (ASCII 4) character to the control card will return a 19 byte packet
response in binary.

The format of the response packet is...
<b0> Start byte (always 15)
<b1><b2><b3> 24-bit signed number which is the X position in steps
<b4><b5><b6> 24-bit signed number which is the Y position in steps
<b7><b8><b9> 24-bit signed number which is the Z position in steps
<b10><b11><b12> 24-bit signed number which is the U position in steps
<b13> 8-bit number which is the spindle speed programmed (as a value

from 0 to 255)
<b14> relay status
<b15> current key code
<b16> current flags
<b17> limit switch status
<b18> 8-bit checksum

The checksum byte is the 2s complement of the sum of the other bytes.

Supported by all control cards.

12Commands interpreted by the control

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.4 <CTRL+E> - Echo

Enables the echoing of all characters sent to the control. This is useful if the control card is to be
controlled using a terminal programme.

This command also enables the output of 'human-friendly' characters on the responses sent by
the control card.

Supported by all control cards.

13 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.5 <CTRL+N> - Echo Off

Disables the echoing of all characters sent to the control.

This command also disables the output of 'human-friendly' characters on the responses sent by
the control card.

Supported by all control cards.

14Commands interpreted by the control

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.6 <CTRL+P> - 26-Byte or 59-Byte Binary Query

MPCx, M640, M641 with V1 firmware

Sending a <CTRL+P> (ASCII 16) character to the control card will return a 26 byte packet
response in binary.

The format of the response packet is...
<b0> Start byte (always 15)
<b1><b2><b3> 24-bit signed number which is the X position in steps
<b4><b5><b6> 24-bit signed number which is the Y position in steps
<b7><b8><b9> 24-bit signed number which is the Z position in steps
<b10><b11><b12> 24-bit signed number which is the U position in steps
<b13><b14><b15> 24-bit signed number which is the V position in steps
<b16><b17><b18> 24-bit signed number which is the W position in steps
<b19> 8-bit number which is the spindle speed programmed (as a value

from 0 to 255)
<b20> relay status
<b21> current key code
<b22> current flags
<b23> active axis for hand-wheel control
<b24> limit switch status
<b25> 8-bit checksum

The checksum byte is the 2s complement of the sum of the other bytes.

Only supported by control cards which support 6 axes.

M641 with V2 firmware, M401 and X-series
(if the card operates in 6-axis mode with EaziCNC 2 then it uses this format)

Sending a <CTRL+P> (ASCII 16) character to the control card will return a 59 byte packet
response in binary.

The format of the response packet is...
<b0> Start byte (always 15)
<b1><b2><b3> 24-bit signed number which is the X position in steps
<b4><b5><b6> 24-bit signed number which is the Y position in steps
<b7><b8><b9> 24-bit signed number which is the Z position in steps
<b10><b11><b12> 24-bit signed number which is the U position in steps
<b13><b14><b15> 24-bit signed number which is the V position in steps
<b16><b17><b18> 24-bit signed number which is the W position in steps
<b19><b20><b21> 24-bit signed number which is the X encoder value
<b22><b23><b24> 24-bit signed number which is the Y encoder value
<b25><b26><b27> 24-bit signed number which is the Z encoder value
<b28><b29><b30> 24-bit signed number which is the U encoder value
<b31><b32><b33> 24-bit signed number which is the V encoder value
<b34><b35><b36> 24-bit signed number which is the W encoder value

15 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

<b37><b38><b39><b40> 32-bit encoder #6 value (usually the hand-wheel count)
<b41><b42><b43><b44> 32-bit encoder #7 value (varies from card to card)
<b45><b46><b47><b48> 32-bit 2nd processor tick-count
<b49><b50> 16-bit 2nd processor communications failure count
<b51> feed-rate override setting (is in 5% increments so 20 is 100%/

default)
<b52> 8-bit number which is the spindle speed programmed (as a value

from 0 to 255)
<b53> relay status
<b54> current key code
<b55> current flags
<b56> active axis for hand-wheel control
<b57> limit switch status
<b58> 8-bit checksum

16Commands interpreted by the control

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.7 <Esc> - Escape Command

Sending an <Esc> character (ASCII 27) to the control will cancel any outstanding commands,
halt any movement and also set the error condition to #1 - Stopped.

In order to be sure that the control is ready for new commands the <Escape> command can be
sent to clear any existing activity.

Supported by all control cards.

17 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.8 @ - 30 Char Hex Query

Sending an '@' (ASCII 64) character to the control card will return a 30 character response
string...

#000000000000000000000000FF00<CR>

The format of the response string is...
#XXXXXXYYYYYYZZZZZZUUUUUUKKFF<CR>

....where
XXXXXX Is 6 hex digits representing a 24-bit number which is the X position in

steps
YYYYYY Is 6 hex digits representing a 24-bit number which is the Y position in

steps
ZZZZZZ Is 6 hex digits representing a 24-bit number which is the Z position in

steps
UUUUUU Is 6 hex digits representing a 24-bit number which is the U position in

steps
KK Is 2 hex digits giving the current key code
FF Is 2 hex digits giving the current flags
<CR> Is a carriage return (ASCII 13)

Supported by all control cards.

18Commands interpreted by the control

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.9 D - Display Command

The D - display command selects whether or not coordinates will be continuously output when
the control card is operating.

'D0<CR>' will turn output off and 'D1<CR>' will turn output on.

Supported by all control cards.

19 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.10 EC - Error Clear

The EC - Error Clear command clears any software controllable error... it will not clear
hardware errors such as an emergency stop activation or limit switch error.

Supported by all control cards.

20Commands interpreted by the control

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.11 ES - Error Status

The ES - Error Status command returns the current error code.

The error codes are...
0 No error
1 Stopped
2 Limit Error
3 Power On
4 Command Error
5 Feedback Error

Supported by all control cards.

21 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.12 F - Feed Command

The F - Feed Command sets the feed rate for movement commands. It also sets the current
feed for manual movement using the jog-buttons.

For the M100 controller the feed is set in steps-per-second but for all others controllers it is set
in millimetres-per-minute.

Supported by all control cards.

22Commands interpreted by the control

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.13 FF - Fast Feed

The FF - Fast Feed command sets the rapid feed rate in steps/sec for 'G0' movement
commands on an M100 controller.

The M100 controller has no non-volatile memory so no parameters are stored between power-
ups. The default step rate for rapid moves is 2750 steps/sec which is the maximum rate... we
recommend not using the G0 command on the M100 but instead using a G1 command with a
high feed rate.

Only supported by the M100 control card.

23 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.14 G0 - Rapid Move

The G0 - Rapid Move command will move the axes to the new programmed position at the
rapid feed rate.

Examples...
G0 X10 Y0.5 Z-2<CR>
G0 X0<CR>
G0 U-0.01<CR>

Movements occurring in several axis at the same time are linear interpolated so that the moves all
start and complete at the same time... the speed of the move is controlled by how long it takes to
make the largest axis movement at the rapid feed rate.

For the M100 controller the coordinates need to be given in whole numbers of steps. For all
other controllers the coordinates are given in millimetres and are converted according to the
settings of the control card parameters.

Supported by all control cards.

24Commands interpreted by the control

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.15 G1 - Feed Move

The G1 - Feed Move command will move the axes to the new programmed position at the
programmed feed rate. The feed rate can be set before the command or a new feed rate can be
set as part of the command. Once set the feed rate remains set until changed.

Examples...
G1 X10 Y0.5 Z-2 F100<CR>
G1 X0<CR>
G1 U-0.01 F10<CR>

Movements occurring in several axis at the same time are linear interpolated so that the moves all
start and complete at the same time... the speed of the move is controlled by how long it takes to
make the largest axis movement at the selected feed rate.

For the M100 controller the coordinates need to be given in whole numbers of steps. For all
other controllers the coordinates are given in millimetres and are converted according to the
settings of the control card parameters.

Supported by all control cards.

25 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.16 G5 - Queued Mode

The G5 - Queued Mode will turn on or off vectored command queuing.

Vectored command queuing allows an extra level of command queuing so that, for instance,
circular or spline moves that are being approximated by a series of short linear interpolation
moves will be smoother on the controller. It also turns off the acceleration and deceleration
between consecutive moves when there is a movement command waiting in the queue and
because of this it is only suitable for sequences of moves that do not include a direct reversal of
direction on an axis.

To turn on queued mode 'G5 P1' is used and to turn it off 'G5 P0'.

N.B. If you need circular interpolation or splines then we highly recommend using one
of our control cards (M641A) which supports that directly or using EaziCNC/
EaziCNCLite or the DLL.

Supported by all control cards.

26Commands interpreted by the control

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.17 G29 - Home Axes

The G29 - Home Axes command will drive each axis for which a coordinate is given to the limit
switch and set the datum to the programmed home position.

Example...
G29 X0 Y0 Z0<CR>

Only supported by control cards which have homing support.

27 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.18 G33 - Sychronised Move

The G33 - Synchronised Move command will move the axes to the new programmed position
in-sync with the spindle. If the spindle speed varies during the move then so will the speed of the
movement of the axes. This is intended primarily for thread cutting on lathes but can also be used
with milling machines for tapping.

Examples...
G1 Z10 P1.25<CR>
G1 X1 Z10 P1<CR>

Only supported by control cards which have spindle synchronisation support.

28Commands interpreted by the control

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.19 G54 - Set Home Position

The G54 - Set Home Position command will set the home position for use with the G29 -
Home Axes command.

Example...
G54 X105 Y150 Z200<CR>

Only supported by control cards which have homing support.

29 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.20 G92 - Set Datum

The G92 - Set Datum command sets the current axis coordinates to the coordinates given.

Example...
G92 X0 Y0 Z0<CR>

For the M100 controller the coordinates need to be given in whole numbers of steps. For all
other controllers the coordinates are given in millimetres and are converted according to the
settings of the control card parameters.

The same result can also be achieved using the SX - Set X, SY - Set Y, SZ - Set Z, SU - Set U
, SV - Set V and SW - Set W commands. One advantage of G92 is that multiple axes datum
can be set at the same time.

Supported by all control cards.

30Commands interpreted by the control

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.21 I - Information Command

The I - Information Command returns information about the control card.

I0 returns the card name and revision code, I1 returns the firmware version number, I2 returns
the firmware date and I3 returns the processor ID.

Supported by all control cards.

31 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.22 M3 - Spindle On CW

The M3 - Spindle On CW turns the spindle on clockwise.

The spindle speed can be given as the 'S' parameter. For an M100 card this is a value from 0-
255 and from other cards it is a spindle speed in RPM which is translated according to the
parameter settings.

Even on cards with no spindle relay or no spindle speed support this still updates all of the flags
on the card.

Examples...
M3<CR>
M3 S200<CR>
M3 S20000<CR>

Supported by all control cards.

32Commands interpreted by the control

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.23 M4 - Spindle On CCW

The M4 - Spindle On CCW turns the spindle on counter-clockwise.

The spindle speed can be given as the 'S' parameter. For an M100 card this is a value from 0-
255 and from other cards it is a spindle speed in RPM which is translated according to the
parameter settings.

Even on cards with no spindle relay or no spindle speed support this still updates all of the flags
on the card.

Examples...
M4<CR>
M4 S200<CR>
M4 S20000<CR>

Supported by all control cards.

33 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.24 M5 - Spindle Off

The M5 - Spindle Off turns the spindle off.

Even on cards with no spindle relay or no spindle speed support this still updates all of the flags
on the card.

Example...
M5<CR>

Supported by all control cards.

34Commands interpreted by the control

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.25 M6 - Change Tool

The M6 - Change Tool command changes the tool offset that is being used to modify the tool
position.

Some control cards have a tool offset table in which offsets in X, Y and Z for tools can be
stored.

The tool offset being used can be changed using this command.

Example...
M6 T2<CR>

Only supported by control cards which have a tool offset table in non-volatile RAM.

35 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.26 M8 - Coolant On

The M8 - Coolant On turns the coolant relay on.

Even on cards with no coolant relay this still updates the flag on the card.

Example...
M8<CR>

Supported by all control cards.

36Commands interpreted by the control

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.27 M9 - Coolant Off

The M8 - Coolant Off turns the coolant relay off.

Even on cards with no coolant relay this still updates the flag on the card.

Example...
M9<CR>

Supported by all control cards.

37 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.28 M2/M30 - Programme End

The M2 - Programme Stop or M30 - Programme End command will not stop execution of
any following commands but they DO shut down the spindle, the coolant and any relays that
have been turned on with the M90 command.

Examples...
M2<CR>
M30<CR>

Supported by all control cards.

38Commands interpreted by the control

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.29 M90 - Relay On

The M90 - Relay On turns an auxiliary relay on.

The relay number is given as parameter 'P'.

Even on cards with no relays this still updates the flag on the card.

Examples...
M90 P5<CR>
M90 P6<CR>

Supported by all control cards.

39 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.30 M91 - Relay Off

The M91 - Relay Off turns an auxiliary relay off.

The relay number is given as parameter 'P'.

Even on cards with no relays this still updates the flag on the card.

Examples...
M91 P7<CR>
M91 P8<CR>

Supported by all control cards.

40Commands interpreted by the control

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.31 M98 - Motors On

The M98 - Motors On turns the stepper motor enable signal on.

Example...
M98<CR>

Supported by all control cards.

41 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.32 M99 - Motors Off

The M99 - Motors Off turns the stepper motor enable signal off.

Example...
M99<CR>

Supported by all control cards.

42Commands interpreted by the control

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.33 MA - Manual Mode

The MA - Manual Mode command will place the controller into manual mode.

In manual mode the axes are controlled by the jog-buttons and the electronics hand-wheel (if
fitted).

Example...
MA<CR>

Supported by all control cards.

43 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.34 P - Parameter Command

The P - Parameter Command sets or returns the value of the control card parameters.

If a parameter value is given as 'R' then the parameter is set to that value otherwise the existing
value is returned.

If 'P99' is sent then parameters 0-19 are returned, if 'P199' is sent then parameters 20-39 are
returned and if 'P299' is sent then parameters 40-59 are returned.

Examples...
P5 R600<CR>
P4<CR>

Supported by all control cards.

44Commands interpreted by the control

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.35 ST - Status Command

The ST - Status Command returns a text string with the current state of the control card.

The main purpose of this command is to allow the control card to be used and setup with a
simple terminal application... it is unlikely to be of any use when writing your own control
programme because the format of the output varies from control card to control card.

Example...
ST<CR>

Supported by all control cards.

45 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.36 SU - Set U

The SU - Set U command sets the current axis coordinates to the coordinates given.

Example...
SU14<CR>

For the M100 controller the coordinates need to be given in whole numbers of steps. For all
other controllers the coordinates are given in millimetres and are converted according to the
settings of the control card parameters.

The same result can also be achieved using the G92 - Set Datum command. One advantage of
G92 is that multiple axes datum can be set at the same time.

Supported by all control cards.

46Commands interpreted by the control

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.37 SV - Set V

The SV - Set V command sets the current axis coordinates to the coordinates given.

Example...
SV-10<CR>

For the M100 controller the coordinates need to be given in whole numbers of steps. For all
other controllers the coordinates are given in millimetres and are converted according to the
settings of the control card parameters.

The same result can also be achieved using the G92 - Set Datum command. One advantage of
G92 is that multiple axes datum can be set at the same time.

Supported by all control cards.

47 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.38 SW - Set W

The SW - Set W command sets the current axis coordinates to the coordinates given.

Example...
SW0.25<CR>

For the M100 controller the coordinates need to be given in whole numbers of steps. For all
other controllers the coordinates are given in millimetres and are converted according to the
settings of the control card parameters.

The same result can also be achieved using the G92 - Set Datum command. One advantage of
G92 is that multiple axes datum can be set at the same time.

Supported by all control cards.

48Commands interpreted by the control

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.39 SX - Set X

The SX - Set X command sets the current axis coordinates to the coordinates given.

Example...
SX10<CR>

For the M100 controller the coordinates need to be given in whole numbers of steps. For all
other controllers the coordinates are given in millimetres and are converted according to the
settings of the control card parameters.

The same result can also be achieved using the G92 - Set Datum command. One advantage of
G92 is that multiple axes datum can be set at the same time.

Supported by all control cards.

49 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.40 SY - Set Y

The SY - Set Y command sets the current axis coordinates to the coordinates given.

Example...
SY4.5<CR>

For the M100 controller the coordinates need to be given in whole numbers of steps. For all
other controllers the coordinates are given in millimetres and are converted according to the
settings of the control card parameters.

The same result can also be achieved using the G92 - Set Datum command. One advantage of
G92 is that multiple axes datum can be set at the same time.

Supported by all control cards.

50Commands interpreted by the control

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.41 SZ - Set Z

The SZ - Set Z command sets the current axis coordinates to the coordinates given.

Example...
SZ3<CR>

For the M100 controller the coordinates need to be given in whole numbers of steps. For all
other controllers the coordinates are given in millimetres and are converted according to the
settings of the control card parameters.

The same result can also be achieved using the G92 - Set Datum command. One advantage of
G92 is that multiple axes datum can be set at the same time.

Supported by all control cards.

51 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

5.42 T - Tool Offset

The T - Tool Offset command allows a tool offset to be set or viewed.

Some control cards have a tool offset table in which offsets in X, Y and Z for tools can be
stored. If this command is given with an X, Y or Z coordinate then the tool offset in the table will
be updated. If the command is given with no coordinates then the current offset values from the
table are returned. If the command is given as 'T99' then the entire tool offset table is returned
(this can be used to determine how many tool offsets are supported in the table).

Tool 0 will always have 0 offsets and is the base tool from which all offsets are taken.

Examples...
T1 X-1 Y0 Z0<CR>
T1<CR>
T99<CR>

Only supported by control cards which have a tool offset table in non-volatile RAM.

52DLL programming

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

6 DLL programming

The DLL ('EaziDLL.dll' allows the more advanced circular interpolation and spline functions to
be used with older controls.

The DLL also deals with the background communications with the control so it may be easier to
implement than programming directly for the RS232 port.

The DLL functions (as of DLL version 2.01) are..

Delphi
function EZVersion:PAnsiChar; stdcall; external 'EaziDLL.dll'
procedure EZInit; stdcall; external 'EaziDLL.dll'
function EZStart(com:Integer; bb:Integer; vw:Boolean; raw:Boolean):Integer; stdcall; external
'EaziDLL.dll'
procedure EZStop; stdcall; external 'EaziDLL.dll'
function EZStatus:Integer; stdcall; external 'EaziDLL.dll'
function EZStatusEx:Integer; stdcall; external 'EaziDLL.dll'
function EZGetVal(c:AnsiChar):Double; stdcall; external 'EaziDLL.dll'
function EZGetParam(p:Integer):Integer; stdcall; external 'EaziDLL.dll'
procedure EZSetParam(p:Integer; v:Integer); stdcall; external 'EaziDLL.dll'
function EZGetReply:PAnsiChar; stdcall; external 'EaziDLL.dll'
function EZGetMachineValue(s:PAnsiChar):PAnsiChar; stdcall; external 'EaziDLL.dll'
function EZBusy:Boolean; stdcall; external 'EaziDLL.dll'
function EZQueued:Boolean; stdcall; external 'EaziDLL.dll'
function EZError:Boolean; stdcall; external 'EaziDLL.dll'
function EZLastError:Integer; stdcall; external 'EaziDLL.dll'
function EZLastErrorMessage:PAnsiChar; stdcall; external 'EaziDLL.dll'
procedure EZClearError; stdcall; external 'EaziDLL.dll'
procedure EZSendCommand(c:PAnsiChar); stdcall; external 'EaziDLL.dll'
procedure EZWaitCommand(c:PAnsiChar); stdcall; external 'EaziDLL.dll'
function EZGetMacID:PAnsiChar; stdcall; external 'EaziDLL.dll'
procedure EZInterpret(c:PAnsiChar); stdcall; external 'EaziDLL.dll'
function EZWaitForMachine(flow:Boolean):Integer; stdcall; external 'EaziDLL.dll'

53 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

MS Visual Studio 2013 / dotNET
[DllImport("EaziDLL.dll")] static extern IntPtr EZVersion();
[DllImport("EaziDLL.dll")] static extern void EZInit();
[DllImport("EaziDLL.dll")] static extern int EZStart(Int32 com, int bb, int vw,
int raw);
[DllImport("EaziDLL.dll")] static extern void EZStop();
[DllImport("EaziDLL.dll")] static extern int EZStatus();
[DllImport("EaziDLL.dll")] static extern int EZStatusEx();
[DllImport("EaziDLL.dll")] static extern Double EZGetVal(char c);
[DllImport("EaziDLL.dll")] static extern int EZGetParam(int p);
[DllImport("EaziDLL.dll")] static extern void EZSetParam(int p, int v);
[DllImport("EaziDLL.dll")] static extern IntPtr EZGetReply();
[DllImport("EaziDLL.dll")] static extern IntPtr EZGetMachineValue([MarshalAs(
UnmanagedType.LPStr)] string c);
[DllImport("EaziDLL.dll")] static extern Boolean EZBusy();
[DllImport("EaziDLL.dll")] static extern Boolean EZQueued();
[DllImport("EaziDLL.dll")] static extern Boolean EZError();
[DllImport("EaziDLL.dll")] static extern int EZLastError();
[DllImport("EaziDLL.dll")] static extern IntPtr EZLastErrorMessage();
[DllImport("EaziDLL.dll")] static extern void EZClearError();
[DllImport("EaziDLL.dll")] static extern void EZSendCommand([MarshalAs(
UnmanagedType.LPStr)] string c);
[DllImport("EaziDLL.dll")] static extern void EZWaitCommand([MarshalAs(
UnmanagedType.LPStr)] string c);
[DllImport("EaziDLL.dll")] static extern IntPtr EZGetMacID();
[DllImport("EaziDLL.dll")] static extern void EZInterpret([MarshalAs(UnmanagedType
.LPStr)] string c);
[DllImport("EaziDLL.dll")] static extern int EZWaitForMachine(Boolean flow);

54DLL programming

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

6.1 EZVersion

Delphi
function EZVersion:PAnsiChar; stdcall; external 'EaziDLL.dll'

MS Visual Studio 2013 / dotNET
[DllImport("EaziDLL.dll")] static extern IntPtr EZVersion();

The EZVersion function returns the version and compile time of the DLL.

The returned value is a null-terminated string of ANSI characters (single-byte per character).

If calling this routine from dotNET a generic pointer (IntPtr) is returned and the Marshal.
PtrToStringAnsi() call should be used to convert this to a useable string.

55 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

6.2 EZInit

Delphi
procedure EZInit; stdcall; external 'EaziDLL.dll'

MS Visual Studio 2013 / dotNET
[DllImport("EaziDLL.dll")] static extern void EZInit();

The EZInit procedure initializes the background thread that is used for communication with the
machine through the serial port.

The EZInit procedure should be called before any other routines.

56DLL programming

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

6.3 EZStart

Delphi
function EZStart(com:Integer; bb:Integer; vw:Boolean; raw:Boolean):Integer; stdcall; external
'EaziDLL.dll'

MS Visual Studio 2013 / dotNET
[DllImport("EaziDLL.dll")] static extern int EZStart(Int32 com, int bb, int vw,
int raw);

The EZStart function initiates communication with the CNC control card.

com is the serial port to be used - for instance to use COM1 com is set to 1. 0 is not a valid port
number.

bb is the baud-rate to be used for communication. Earlier cards (such as the M401) use 38400
and later cards use 115200.

vw selects whether or not V&W coordinates are supported in the communications. This also
determines whether the feed-back/encoder values are read as it selects between the 26 and 59
byte binary packet formats.

raw selects whether the control card needs coordinate date to be sent in steps or as metric
coordinates.

The return value is the status byte (also readable using EZStatus). Return values less than 0 or
greater than 255 indicate problems with the serial port, the communication or the machine.

Error code Error

-1 / xFFFFFFFF Communication port OK but no control connected

256 / x100 The COM port is blocked or not available

258 / x102 The COM port could not be configured

57 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

6.4 EZStop

Delphi
procedure EZStop; stdcall; external 'EaziDLL.dll'

MS Visual Studio 2013 / dotNET
[DllImport("EaziDLL.dll")] static extern void EZStop();

EZStop halts the background process that communicates with the control card. EZStop is only
usually called as part of closing the program but may be called to change baud-rates or the serial
port.

58DLL programming

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

6.5 EZStatus

Delphi
function EZStatus:Integer; stdcall; external 'EaziDLL.dll'

MS Visual Studio 2013 / dotNET
[DllImport("EaziDLL.dll")] static extern int EZStatus();

The return value is the status byte (also readable using EZStatus). Return values less than 0 or
greater than 255 indicate problems with the serial port, the communication or the machine.

Error code Error

-1 / xFFFFFFFF Communication port OK but no control connected

256 / x100 The COM port is blocked or not available

258 / x102 The COM port could not be configured

For the other bits/data in the status byte see the section Flags and values returned by the control.

59 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

6.6 EZStatusEx

Delphi
function EZStatusEx:Integer; stdcall; external 'EaziDLL.dll'

MS Visual Studio 2013 / dotNET
[DllImport("EaziDLL.dll")] static extern int EZStatusEx();

The returned values is a 32-bit composite of the 8-bit keyboard, spindle, relay and limit bytes (in
low to high order).

For a description of the bit values see the section Flags and values returned by the control.

Please note the exact keyboard mapping varies from control card to control card.

60DLL programming

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

6.7 EZGetVal

Delphi
function EZGetVal(c:AnsiChar):Double; stdcall; external 'EaziDLL.dll'

MS Visual Studio 2013 / dotNET
[DllImport("EaziDLL.dll")] static extern Double EZGetVal(char c);

This command can be used to read values from the control card and from DLL interpreter. The
c parameter is a character index for value - so for instance to read the current X coordinate an
'X' is sent.

The return value is a double (a 64-bit floating point representation). The axis scaling parameters
need to be correctly configured for the return value to be correct.

61 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

6.8 EZGetParam

Delphi
function EZGetParam(p:Integer):Integer; stdcall; external 'EaziDLL.dll'

MS Visual Studio 2013 / dotNET
[DllImport("EaziDLL.dll")] static extern int EZGetParam(int p);

Reads one of the parameters [0..99] that is used to configure the control card and DLL.

N.B. These parameters are the copies in the DLL and NOT those in the control card.

EaziCNC reads the parameters during control card configuration and stores a local copy of them
(in the '.ini' file). These are then reloaded whenever EaziCNC is loaded.

The DLL initializes with a generic set of parameters. If you do not set the more important
parameters to match the values in the control card during startup then the returned coordinates
and some of the behaviours of the card will not be correct.

Some control cards store the parameters and in this case the EZGetMachineValue function can
be used to read a parameter and then that value set in the DLL. Other control cards, such as the
M401, do not store parameters at all and require that the correct parameters are stored and
provided to the DLL by the program calling the DLL.

62DLL programming

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

6.9 EZSetParam

Delphi
procedure EZSetParam(p:Integer; v:Integer); stdcall; external 'EaziDLL.dll'

MS Visual Studio 2013 / dotNET
[DllImport("EaziDLL.dll")] static extern void EZSetParam(int p, int v);

Sets one of the parameters [0..99] that is used to configure the control card and DLL. The p
value is the parameter number and v is the parameter value (0..65535).

N.B. These parameters are the copies in the DLL and NOT those in the control card.

EaziCNC reads the parameters during control card configuration and stores a local copy of them
(in the '.ini' file). These are then reloaded whenever EaziCNC is loaded.

The DLL initializes with a generic set of parameters. If you do not set the more important
parameters to match the values in the control card during startup then the returned coordinates
and some of the behaviours of the card will not be correct.

Some control cards store the parameters and in this case the EZGetMachineValue function can
be used to read a parameter and then that value set in the DLL. Other control cards, such as the
M401, do not store parameters at all and require that the correct parameters are stored and
provided to the DLL by the program calling the DLL.

63 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

6.10 EZGetReply

Delphi
function EZGetReply:PAnsiChar; stdcall; external 'EaziDLL.dll'

MS Visual Studio 2013 / dotNET
[DllImport("EaziDLL.dll")] static extern IntPtr EZGetReply();

This functions returns any reply that was received from the control card when a command was
executed.

Commands prefixed by a '?' when sent to EZSendCommand or EZWaitCommand and
commands prefixed by '?$?' when sent to EZInterpret will return a reply from the control.

The returned value is a null-terminated string of ANSI characters (single-byte per character).

If calling this routine from dotNET a generic pointer (IntPtr) is returned and the Marshal.
PtrToStringAnsi() call should be used to convert this to a useable string.

64DLL programming

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

6.11 EZGetMachineValue

Delphi
function EZGetMachineValue(s:PAnsiChar):PAnsiChar; stdcall; external 'EaziDLL.dll'

MS Visual Studio 2013 / dotNET
[DllImport("EaziDLL.dll")] static extern IntPtr EZGetMachineValue([MarshalAs(
UnmanagedType.LPStr)] string c);

This function is shorthand for the following...

EZWaitForMachine(False);
EZSendCommand(s);
EZWaitForMachine(False);
return EZGetReply();

This is most useful, for instance, if a parameter is to be read...

Delphi
result := EZGetMachineValue('?P8'#13);

dotNet
result := Marhall.PtrToStringAnsi.(EZGetMachineValue("?P8\r"));

The returned value is a null-terminated string of ANSI characters (single-byte per character).

If calling this routine from dotNET a generic pointer (IntPtr) is returned and the Marshal.
PtrToStringAnsi() call should be used to convert this to a useable string.

65 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

6.12 EZBusy

Delphi
function EZBusy:Boolean; stdcall; external 'EaziDLL.dll'

MS Visual Studio 2013 / dotNET
[DllImport("EaziDLL.dll")] static extern Boolean EZBusy();

Returns the Busy status. The control/DLL is busy if any of the following is true...
A command is being processed
A command is in the queue
A command is in the serial/command buffer

Monitoring or sampling the EZBusy state before sending a command will effectively wait for a
command to complete before another is sent.

Monitoring the EZQueued state allows faster command throughput because the next command
can be sent as soon as the control is ready for it.

66DLL programming

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

6.13 EZQueued

Delphi
function EZQueued:Boolean; stdcall; external 'EaziDLL.dll'

MS Visual Studio 2013 / dotNET
[DllImport("EaziDLL.dll")] static extern Boolean EZQueued();

Returns the Queued status. The control/DLL is queued if either of the following is true...
A command is in the queue
A command is in the serial/command buffer

Monitoring or sampling the EZBusy state before sending a command will effectively wait for a
command to complete before another is sent.

Monitoring the EZQueued state allows faster command throughput because the next command
can be sent as soon as the control is ready for it.

67 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

6.14 EZError

Delphi
function EZError:Boolean; stdcall; external 'EaziDLL.dll'

MS Visual Studio 2013 / dotNET
[DllImport("EaziDLL.dll")] static extern Boolean EZError();

Returns the Error state of the control/DLL.

If an error occurs during command processing this flag is set and remains set until EZClearError
is called.

Some commands cannot be executed when the error flag is set.

68DLL programming

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

6.15 EZLastError

Delphi
function EZLastError:Integer; stdcall; external 'EaziDLL.dll'

MS Visual Studio 2013 / dotNET
[DllImport("EaziDLL.dll")] static extern int EZLastError();

Return the last error code.

The error code can be retrieved after EZClearError is called so the EZError function needs to
be called to check if there is an active error condition.

The error codes are...
0 No error
1 Stopped
2 Limit Error
3 Power On
4 Command Error
5 Feedback Error

69 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

6.16 EZLastErrorMessage

Delphi
function EZLastErrorMessage:PAnsiChar; stdcall; external 'EaziDLL.dll'

MS Visual Studio 2013 / dotNET
[DllImport("EaziDLL.dll")] static extern IntPtr EZLastErrorMessage();

Returns the error message for the last error.

The returned value is a null-terminated string of ANSI characters (single-byte per character).

If calling this routine from dotNET a generic pointer (IntPtr) is returned and the Marshal.
PtrToStringAnsi() call should be used to convert this to a useable string.

70DLL programming

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

6.17 EZClearError

Delphi
procedure EZClearError; stdcall; external 'EaziDLL.dll'

MS Visual Studio 2013 / dotNET
[DllImport("EaziDLL.dll")] static extern void EZClearError();

Clears any error state in the control/DLL.

Some error will persist even if cleared - such as a limit error - because the machine needs to be
moved off of the limit.

71 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

6.18 EZSendCommand

Delphi
procedure EZSendCommand(c:PAnsiChar); stdcall; external 'EaziDLL.dll'

MS Visual Studio 2013 / dotNET
[DllImport("EaziDLL.dll")] static extern void EZSendCommand([MarshalAs(
UnmanagedType.LPStr)] string c);

EZSendCommand sends commands directly to the control bypassing the G-code interpreter in
the DLL.

Commands need to be valid G-code strings with spaces separating the tokens and be terminated
with a carriage return (ASCII 13) or the Escape code (ASCII 27).

The Escape code (ASCII 27) is a useful command to send as it will interrupt any command in
the interpreter or on the control card and will also resynchronize the control and the interpreter
(it is possible for the control and the DLL to get out of synchronization if commands are sent
through both EZSendCommand and EZInterpret as the interpreter will be unaware of any
changes to the control that did not pass through EZInterpret).

If sending an Escape code it needs to be sent as a null-terminated string and not a single
character.

72DLL programming

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

6.19 EZWaitCommand

Delphi
procedure EZWaitCommand(c:PAnsiChar); stdcall; external 'EaziDLL.dll'

MS Visual Studio 2013 / dotNET
[DllImport("EaziDLL.dll")] static extern void EZWaitCommand([MarshalAs(
UnmanagedType.LPStr)] string c);

EZWaitCommand sends commands directly to the control bypassing the G-code interpreter in
the DLL.

Commands need to be valid G-code strings with spaces separating the tokens and be terminated
with a carriage return (ASCII 13) or the Escape code (ASCII 27).

The Escape code (ASCII 27) is a useful command to send as it will interrupt any command in
the interpreter or on the control card and will also resynchronize the control and the interpreter
(it is possible for the control and the DLL to get out of synchronization if commands are sent
through both EZSendCommand and EZInterpret as the interpreter will be unaware of any
changes to the control that did not pass through EZInterpret).

If sending an Escape code it needs to be sent as a null-terminated string and not a single
character.

EZWaitCommand waits for the control/DLL to finish processing the current command so if
sending an Escape code it is better to use EZSendCommand.

73 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

6.20 EZGetMacID

Delphi
function EZGetMacID:PAnsiChar; stdcall; external 'EaziDLL.dll'

MS Visual Studio 2013 / dotNET
[DllImport("EaziDLL.dll")] static extern IntPtr EZGetMacID();

Returns the ID string for the the control card connected.

The returned value is a null-terminated string of ANSI characters (single-byte per character).

If calling this routine from dotNET a generic pointer (IntPtr) is returned and the Marshal.
PtrToStringAnsi() call should be used to convert this to a useable string.

74DLL programming

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

6.21 EZInterpret

Delphi
procedure EZInterpret(c:PAnsiChar); stdcall; external 'EaziDLL.dll'

MS Visual Studio 2013 / dotNET
[DllImport("EaziDLL.dll")] static extern void EZInterpret([MarshalAs(UnmanagedType
.LPStr)] string c);

EZInterpret processes commands through the G-code interpreter in the DLL. The G-code
interpreter can process the arc and spline codes and checks the code before sending it to the
control card.

As one of the checks the interpreter will not allows potentially damaging codes such as those that
affect parameters and settings so these codes need to be prefixed by '?$?' if they need to be
passed through.

Before calling complex codes it is best to call EZClearError as codes such as arcs and splines
will not work if the Error flag is set.

75 Programming Guide for CNC Control Cards

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

6.22 EZWaitForMachine

Delphi
function EZWaitForMachine(flow:Boolean):Integer; stdcall; external 'EaziDLL.dll'

MS Visual Studio 2013 / dotNET
[DllImport("EaziDLL.dll")] static extern int EZWaitForMachine(Boolean flow);

Waits for the control/DLL to finish processing a command.

The flow parameter determines whether the routine waits for the EZBusy (False) or EZQueued
(True) to be clear.

The returned parameter is the number of milliseconds that the routine waited.

76Version History

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

7 Version History

24/04/2014 5th release
DLL updated to be dotNET compatible.
DLL documentation added to the programming manual.

02/06/2008 4th release
Information added for the X-series cards, M641/642 with V2 firmware and the M401 card.

06/11/2005 3rd release
Spelling corrections and a slight modification to the sample control loop flowchart.

26/10/2005 2nd release
FF - Fast Feed command added (applies to M100 only)

24/10/2005 Initial release
For M100, M441U, M640, M641, MPC4 and MPC5

Programming Guide for CNC Control Cards77

Copyright © 2005-2014 Conqueror Design and Engineering Ltd.

Index

- C -
CNC Commands 8

- D -
Direct Control 1

- F -
flow chart 4

- K -
Key code byte 5

- L -
Limit switch status 5

- R -
Relay status 5

RS232 1

- S -
Sample loop 4

Sending commands 3

Sending queries 3

Status byte 5

- T -
Tokens 8

	Direct control via the RS232
	Communication
	Sample Communication Loop

	Flags and values returned by the control
	Useful Tips
	Commands interpreted by the control
	<CTRL+B> - 34 Char Hex Query
	<CTRL+C> - Flags and Buffer Count
	<CTRL+D> - 19-Byte Binary Query
	<CTRL+E> - Echo
	<CTRL+N> - Echo Off
	<CTRL+P> - 26-Byte or 59-Byte Binary Query
	<Esc> - Escape Command
	@ - 30 Char Hex Query
	D - Display Command
	EC - Error Clear
	ES - Error Status
	F - Feed Command
	FF - Fast Feed
	G0 - Rapid Move
	G1 - Feed Move
	G5 - Queued Mode
	G29 - Home Axes
	G33 - Sychronised Move
	G54 - Set Home Position
	G92 - Set Datum
	I - Information Command
	M3 - Spindle On CW
	M4 - Spindle On CCW
	M5 - Spindle Off
	M6 - Change Tool
	M8 - Coolant On
	M9 - Coolant Off
	M2/M30 - Programme End
	M90 - Relay On
	M91 - Relay Off
	M98 - Motors On
	M99 - Motors Off
	MA - Manual Mode
	P - Parameter Command
	ST - Status Command
	SU - Set U
	SV - Set V
	SW - Set W
	SX - Set X
	SY - Set Y
	SZ - Set Z
	T - Tool Offset

	DLL programming
	EZVersion
	EZInit
	EZStart
	EZStop
	EZStatus
	EZStatusEx
	EZGetVal
	EZGetParam
	EZSetParam
	EZGetReply
	EZGetMachineValue
	EZBusy
	EZQueued
	EZError
	EZLastError
	EZLastErrorMessage
	EZClearError
	EZSendCommand
	EZWaitCommand
	EZGetMacID
	EZInterpret
	EZWaitForMachine

	Version History

